

Endmill Series for High Hardened Steel Machining at High Speeds

- Increased Wear Resistance The new coating technology improves wear resistance
- Improved Cutting Performance and Productivity The new shape boosts productivity due to high speed and high precision machining

H Endmill For high hardened steel in high speed machining

Endmill Series for High Hardened Steel Machining at High Speeds **H Endmill**

High hardened & heat treated steels (HRC 45~70) used in parts for automobiles and molds offer excellent durability and effective wear resistance.

This hardened steel material apparently causes massive tool wear on relief surface involving high temperatures in high speed and dry machining. Additionally, large impact during machining results in chipping and tool breakage.

The H Endmill is specifically designed for machining high hardened & heat treated workpieces, complemented with an ultra fine substrate and a newly invented AlTiSiN coating layer. It features good adhesion on coating layer and excellent resistance to wear at high temperatures. As a result it improves tool life by delaying coating flaking at high speed and dry cutting conditions.

Thanks to the negative rake angle, blade design for low cutting load and special edge treatment, chipping resistance has significantly been improved to enable stable machining without edge breakage.

The H Endmill boosts tool life by more than 20% compared to previous products, delivering higher wear resistance and optimum tool geometries that suit machining high hardened & heat treated materials.

→ Features

New grades applied (PC303S, PC310U)

- Ultra fine substrate + AITiSiN coating layer for excellent wear resistance
- High accuracy with tolerance
 - h5 High quality production system enables tolerance-h5 through the whole series
- Special edge treatment
- Prevents chipping and enables continued stable machining

→ Cutting Performance

[H Endmill]

[Competitor]

- * Germany [DIN]
- **conditions** fz(mm/t) = 0.05, ap(mm) = 8.0, ae(mm) = 0.4, wet PRE4080-100-R05 Tools **H Endmill** 30% longer 100m Competitor tool life
- Cutting length(m) Cutting edge treatment for less chipping

→ Recommended Cutting Conditions (PRE4000 Radius)

Workpiece	Pre hardened steel (≥HRC40)		High hardene	d steel (⊴HRC55)	High hardened steel (HRC55~HRC70)		
Diameter(Ø)	R.P.M, n(min⁻¹)	Feed, vf(mm/min)	R.P.M, n(min⁻¹)	Feed, vf(mm/min)	R.P.M, n(min⁻¹)	Feed, vf(mm/min)	
3	17,300	1,250	11,500	840	7,500	256	
4	13,200	1,300	8,800	880	5,600	268	
5	12,500	1,500	8,300	1,000	5,100	296	
6	10,350	1,400	6,900	950	4,200	280	
8	7,800	1,350	5,200	900	3,200	264	
10	6,150	1,260	4,100	840	2,550	248	
12	5,250	1,260	3,500	840	2,100	240	

Application tip

ap

Shouldering depth(ap) and radial depth(ae)

• ae = 0.03D

Workpiece should be clamped rigidly.

In case of vibration, reduce R.P.M and feed rate by the same ratio

→ Recommended Cutting Conditions (PRE4000 Radius)

Workpiece	Pre hardened steel (≥HRC40)		High hardened	d steel (⊴H RC55)	High hardened steel (HRC55~HRC70)		
Diameter(Ø)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)	
3	17,300	544	11,500	336	7,500	128	
4	13,200	560	8,800	352	5,600	136	
5	12,500	644	8,300	400	5,100	144	
6	10,350	616	6,900	384	4,200	144	
8	7,800	576	5,200	356	3,200	132	
10	6,150	544	4,100	332	2,550	124	
12	5,250	544	3,500	332	2,100	124	

Application tip

Slotting depth(ap)

• ap = 0.05D

• ae = 1.0D

• Workpiece should be clamped rigidly.

In case of vibration, reduce R.P.M and feed rate by the same ratio

* Cutting condition by overhang

- Adjust conditions according to the overhang.
 - \rightarrow E.g) When the overhang is 3D and is increased by 1D, decrease R.P.M and feed 10%.

***Notice**

- Cutting conditions are up to the machine's condition and the shape of cutting.
- Use cutting fluid that is suited in order to reduce temperature reaction

→ Recommended Cutting Conditions (PBE2000 Ball)

Workpiece	Pre hardened steel (HRC35~HRC45)		High hardened st	eel (HRC45~HRC55)	High hardened steel (HRC55~HRC70)	
Diameter(Ø)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)	R.P.M, n(min ⁻¹)	Feed, vf(mm/min)
0.5	35,000	1,470	31,500	1,330	28,000	1,050
1	35,000	2,940	31,500	2,660	28,000	2,000
1.2	33,600	3,010	30,100	2,695	26,600	2,100
1.5	33,600	3,150	30,100	2,800	25,900	2,150
2	33,460	3,360	28,000	2,800	24,500	2,200
2.5	25,900	3,710	22,400	2,800	17,500	2,200
3	22,260	3,710	18,550	2,800	16,500	2,200
4	16,730	3,710	14,000	2,800	13,000	2,200
5	17,800	4,900	15,000	3,750	12,500	2,100
6	13,400	4,100	11,000	3,100	10,000	2,500
8	10,700	3,500	9,000	2,700	8,000	2,150
10	8,900	3,100	7,500	2,400	6,600	1,900
12	6,680	2,500	5,600	1,900	5,000	1,550

Application tip

• ap = 0.02D

• pf = 0.05D

· Workpiece should be clamped rigidly.

In case of vibration, reduce RPM and feed rate by the same ratio

* Cutting condition by overhang

 Adjust conditions according to the overhang. \rightarrow E.g) When the overhang is 3D and is increased by 1D, decrease R.P.M and feed 10%.

*Notice

- Cutting conditions are up to the machine's condition and the shape of cutting.
- Use cutting fluid that is suited in order to reduce temperature reaction

* Effective Cutting Speed Formulas (Ball Endmills)

- Effective cutting speed, Veff = $(\pi \times \text{Deff} \times n)/1000$ (n = min⁻¹)
- Effective diameter, Deff = $(2\sqrt{ap(D-ap)}) \times \alpha$ D=Ø(Tool diameter), Deff=Effective diameter
- Examine the machining efficiency by applying the effective cutting speed(Veff) according to axial depth(ap) per effective diameter(Deff)

* Effective diameter formulas (Ball Endmills, Slope angle = 0°)

Overhang ØD

Ex) Diameter : 6mm, ap=0.3mm, Deff=2.6mm, RPM, n=14,000(min-1) Slope angle 0° : Veff = 113.7(m/min) Slope angle 15°: Veff = 113.7 x 1.5 = 170.6(m/min)

(mm)

50th Anniversary Past 50 years of challenge, Next 50 years of creativity.

	— Ød	-
ľ		

Ø	Helix	Grado			ØD	Tolerance	
	Angle 30°	PC202S	shank	~	Ø5.9	0.00 ~ -0.015	
		1 00000		Ø	6.0 ~	0.00 ~ -0.025	

Hardr	ess of work	rpiece	Workpiece			
~H _R C40	~H _R C55	~H _R C70	HPM1 KP4M	NAK55 NAK80 STAVAX	X100CrMoV5 1 (DIN) X40CrMoV5-1	
0	0	0	0	0	O	

	Designation	R	ØD	Ød	Q	L
PBE	PBE2005-040	0.25	0.5	6	1	40
2	PBE2010-050	0.5	1	6	2.5	50
	PBE2012-050	0.6	1.2	6	3	50
	PBE2015-050	0.75	1.5	6	4	50
	PBE2020-050	1	2	6	5	50
	PBE2025-060	1.25	2.5	6	7	60
	PBE2030-060	1.5	3	6	8	60
	PBE2040-070	2	4	6	8	70
	PBE2050-080	2.5	5	6	10	80
	PBE2060-090	3	6	6	12	90
	PBE2080-100	4	8	8	14	100
	PBE2100-100	5	10	10	18	100
	PBE2120-110	6	12	12	22	110

➔ PRE4000 (Standard Radius)

	Helix	Grade PC310U	bF	ØD	Tolerance
	Angle		n5 sharele	~ Ø5.9	0.00 ~ -0.015
	30°		snank	Ø6.0 ~	0.00 ~ -0.025

ØD		<u>}</u>	 - ød
r	l	L	

	Workpiece			
HPM1 KP4M	NAK55 NAK80 STAVAX	X100CrMoV5 1 (DIN) X40CrMoV5-1		
0	O	0		
	HPM1 KP4M	HPM1 KP4M NAK55 NAK80 STAVAX		

	Designation	ØD	Ød	Q	L	r
PRE	PRE4030-060-R01	3	6	8	60	0.1
	PRE4030-060-R02	3	6	8	60	0.2
	PRE4030-060-R03	3	6	8	60	0.3
	PRE4030-060-R05	3	6	8	60	0.5
	PRE4040-070-R01	4	6	10	70	0.1
	PRE4040-070-R02	4	6	10	70	0.2
	PRE4040-070-R03	4	6	10	70	0.3
	PRE4040-070-R05	4	6	10	70	0.5
	PRE4040-070-R10	4	6	10	70	1
	PRE4060-090-R02	6	6	15	90	0.2
	PRE4060-090-R03	6	6	15	90	0.3
	PRE4060-090-R05	6	6	15	90	0.5
	PRE4060-090-R10	6	6	15	90	1
	PRE4080-100-R02	8	8	20	100	0.2
	PRE4080-100-R03	8	8	20	100	0.3
	PRE4080-100-R05	8	8	20	100	0.5
	PRE4080-100-R10	8	8	20	100	1
	PRE4100-100-R03	10	10	25	100	0.3
	PRE4100-100-R05	10	10	25	100	0.5
	PRE4100-100-R10	10	10	25	100	1
	PRE4120-110-R03	12	12	30	110	0.3
	PRE4120-110-R05	12	12	30	110	0.5
	PRE4120-110-R10	12	12	30	110	1

Holystar B/D, 1350, Nambusunhwan-ro, Geumcheon-gu, Seoul, 08536, Korea Tel : +82-2-522-3181 Fax : +82-2-522-3184, +82-2-3474-4744 Web : www.korloy.com E-mail : export@korloy.com

(C) KORLOY AMERICA

620 Maple Avenue, Torrance, CA 90503, USA Tel : +1-310-782-3800 Toll Free : +1-888-711-0001 Fax : +1-310-782-3885 www.korloyamerica.com E-mail : sales@korloy.us

& KORLOY EUROPE

Gablonzer Str. 25-27, 61440 Oberursel, Germany Tel : +49-6171-277-83-0 Fax : +49-6171-277-83-59 www.korloyeurope.com E-mail : sales@korloyeurope.com

(A) KORLOY INDIA

Plot NO.415, Sector 8, IMT Manesar, Gurgaon 122051, Haryana, INDIA Tel : +91-124-4391790 Fax : +91-124-4050032 www.korloyindia.com E-mail : sales.kip@korloy.com

(A) KORLOY BRASIL

Av. Aruana 280, conj.12, WLC, Alphaville, Barueri, CEP06460-010, SP, Brasil Tel : +55-11-4193-3810 E-mail : vendas@korloy.com

